Name of the New Method	MPN-Real-Time PCR Method for the Detection of Vibrio Vulnificus from Oysters
Name of the Method	USFDA Gulf Coast Seafood Laboratory
Developer	
Developer Contact	USFDA Gulf Coast Seafood Laboratory,
Information	1 Iberville Drive,
	Dauphin Island, AL 36528
	Jessica.jones@fda.hhs.gov

Checklist	Y/N	Submitter Comments	
A. Need for the New Method			
Clearly define the need for which the method has been developed.	Y	Currently, the most common NSSP method used to detect <i>Vibrio vulnificus</i> (Vv) in oysters is MPN-culture. The method is time consuming and laborious taking a minimum of four full days to produce a result. A quicker method uses Real-time PCR for detection, currently the only NSSP approved Real-time PCR utilizes Sybr green: a non-specific DNA binding molecule, which negates the ability to multiplex thus is not permissive of the use of an internal control to assure the reaction integrity. The ability to use an internal control adds a level of reliability the use of a non-specific binder like Sybr Green cannot. Additionally, the Sybr Green method is validated for use with the Smart Cycler by Cepheid which, as of December 2018, will no longer be supported by the manufacturer.	
What is the intended names of the	V	The MPN Real-time PCR method for Vv detection in oysters will utilize the AB7500 Fast, the same instrument which the NSSP-approved MPN Real-time PCR methods for Vp utilizes. Further, this method uses a specific probe targeting the vvh gene of Vv and includes an internal control in a single assay. This assay is rapid and robust producing highly reliable results in 24-36 hours.	
What is the intended purpose of the method?	Y	Approved NSSP method for enumeration of Vv from oysters.	

Is there an acknowledged need for	Y	There is current methodology. This assa	
this method in the NSSP?		is quicker than the aproved culture	
		methods and more robust than the	
		existing real-time PCR method.	
What type of method? i.e. chemical,	Y	MPN enrichment with molecular	
molecular, culture, etc.		confirmation.	

B. Method Documentation		
1. Method documentation includes		
the following information:		
26.1.1511		LIDIY D. LET. DCD M. L. 10. L
Method Title	Y	MPN-Real-Time PCR Method for the
		Detection of Vibrio vulnificus from
Method Scope	Y	Oysters This method is for the detection of <i>Vibrio</i>
Method Scope	1	vulnificus from oysters using the AB7500
		Fast real-time PCR platform.
References	Y	Campbell, M.S., Wright, A.C., 2003.
		Real-time PCR analysis of <i>Vibrio</i>
		vulnificus from oysters. Appl Environ
		Microbiol 69, 7137-7144
		Jones, J.L., Kinsey, T.P., Johnson, L.W.,
		Porso, R., Friedman, B., Curtis, M.,
		Wesighan, P., Schuster, R., Bowers, J.C.,
		2016. Effects of Intertidal Harvest
		Practices on Levels of <i>Vibrio</i> parahaemolyticus and <i>Vibrio</i> vulnificus
		Bacteria in Oysters. Appl Environ
		Microbiol 82, 4517-4522.
		1317 1322.
		Kaysner, C., DePaola, A., 2004. Vibrio,
		Bacteriological Analytical Manual, 8th
		ed.
		N 1
		Nordstrom, J.L., Vickery, M.C.,
		Blackstone, G.M., Murray, S.L., DePaola,
		A., 2007. Development of a multiplex
		real-time PCR assay with an internal amplification control for the detection of
		total and pathogenic Vibrio
		parahaemolyticus bacteria in oysters.
		Appl Environ Microbiol 73, 5840-5847.
Principle	Y	This method is uses an MPN format for
_		enumeration based on molecular (PCR)
		detection of the vvh gene specific to Vv.

Any proprietary aspects	Y	The AB7500 Fast is a proprietary real-
Any proprietary aspects	1	time PCR platform developed by Applied
		1 1 1 1 1
		Biosystems and sold through
		ThermoFisher Scientific. The optical
		plates and caps or film used are
		proprietary to the instrument.
Equipment required	Y	Equipment is listed in Appendix A.
Reagents required	Y	Media and reagents are listed in
		Appendix B.
Sample collection, preservation and	Y	Shellstock samples are bagged
storage requirements		immediatley upon collection and labeled
6 1		with collector's name, the source of
		harvest, sampling stations, time, and date.
		Samples are placed in dry storage (ice
		chest or equivalent) maintained between
		- /
		2°C and 10°C with ice or cold packs for
		transport. A layer of towels, bubblewrap,
		or another appropriate substance will
		separate shellfish from contact with ice or
		cold packs. If collected samples are
		frozen (such as IQF), direct contact with
		ice or cold packs is not permitted.
		Immediately upon arrival of sample(s) to
		the laboratory, date, time, and initials of
		receiver are documented. The temperature
		=
		of three shellfish, each from a separate
		location within each shipping container, is
		measured by opening the sell enough to
		insert a temperature probe into the meat of
		the shellfish. If IQF samples are received,
		assure samples are frozen. Store at less
		than -15°C until ready to process.
		Temperatures are taken immediately after
		defrosting as described above. The
		shellfish is discarded after temperature is
		measured. Once temperature of the
		samples upon intake is established, the
		samples are placed under refrigeration for
		not longer than 36h after collection, unless
		processed immeditely. Storage is
		documented. If processing IQF samples,
		samples are defrosted under refrigeration
		for no longer than 36h.
Safaty raquiraments	Y	
Safety requirements	1	Basic Personal Protection Equipment
		(PPE) is needed. A chain mail glove may

		be worn during shucking. Blending is	
		done in a biosafety hood or the blender is	
		placed in a splash shielded containter or	
		blender box. All biological waste is	
		autoclaved and disposed of according to	
		state regulations.	
Clear and easy to follow step-by-	Y	Detailed procedure including sample	
step		preparation, MPN, PCR, and data	
procedure		analysis is included in Appendix C.	
Quality control steps specific for	Y	Appropriately diluted process controls are	
this		used (Vv ATCC 33816 and Vp F11-3A).	
method		Appropriately diluted Internal	
		Amplification Control (IAC) DNA is	
		included in all PCRs. Manual review of	
		amplification curves is conducted.	

C. Validation Criteria		
1. Accuracy / Trueness	Y	Result: 110% Data: Table 1 Spike Range: -0.35 to 6.54 Log CFU/g
2. Measurement uncertainty	Y	Result: -0.57 to 0.044 log MPN/g Data: Table 1 Spike Range: -0.35 to 6.54 Log CFU/g
3. Precision characteristics (repeatability)	Y	Results: Variance ratio is <i>not significant</i> , based on least square regression. Calculated variability of the MPN method is 0.39, with a lower 95% CI of 0.32. The theoretical variability is 0.32. Data: Table 2, Figure 1 Spike Range: 0.38 to 5.54 Log CFU/g
4. Recovery	Y	Result: 110% Is the one way ANOVA to determine the consistency of recovery significant? No. Data: Table 2 Spike Range: 0.38 to 5.54 Log CFU/g
5. Specificity	Y	$\begin{array}{c} \textit{V. alginolyticus:} \; SI_{avg} = \text{-}1.28, p\text{=}0.42 \\ \textit{V. cholerae:} \; SI_{avg} = 1.26, p\text{=}0.09 \\ \textit{V. fluvialis:} \; SI_{avg} = \text{-}2.41, p\text{=}0.79 \\ \textit{V. parahaemolyticus:} \; SI_{avg} = 7.49, \\ p\text{=}0.07 \end{array}$

		Data: Table 3
		Range: 0.52 to 1.53 Log CFU/g
6. Working and Linear ranges	Y	Pearson's r: 0.97
		Line equation: $log(MPN) = 0.44 +$
		0.93 x log(Plate Count)
		Is Pearson's r significant?:Yes
		Data: Table 4 and Figure 2
		Range: -0.62 to 6.54 Log CFU/g
7. Limit of detection	Y	Result: 2.75
		95% CI: 1.95, 3.88
		Data: Table 4 and Figure 1
		Range: -0.62 to 6.54 Log CFU/g
8. Limit of quantitation / Sensitivity	Y	Result: 0.3 MPN/g
		Data: Table 4 and Figure 1
		Range: -0.62 to 6.54 Log CFU/g
9. Ruggedness	Y	Is there a significant difference
		between samples? Not under
		conditions tested.
		Data: Table 5
		Range: 0.52 to 4.88 Log CFU/g
10. Matrix effects	Y	Effects of oyster matrix on the
		performance of the method was taken
		into consideration by using various
		sources of oysters for this study.
		Appendix D.
11. Comparability (if intended as a	Y	No statistically significant difference
substitute for an established method		between test and accepted methods.
accepted by the NSSP)		(p<0.05)
		Data: Table 6

D. Other Information		
1. Cost of the method	Y	Cost per sample for MPN: \$1.05 Cost per sample for PCR: \$20.55 Cost only includes reagents and consumables, infrastructure and personnel were not taken into account.
2. Special technical skills required to perform the method	Y	It is recommended that analysts have some formal training in molecular techniques or PCR, specifically.
3. Special equipment required and associated cost	Y	AB7500 FAST: \$34,060.00 AB7500 FAST annual maintenance contract: \$5,777.00
4. Abbreviations and acronyms defined	Y	Abbreviations and Acronyms are listed in appendix E.
5. Details of turn around times	Y	Results can be reported within 28h of

(time involved to complete the method)		sample receipt.
6. Provide brief overview of the quality systems used in the lab	Y	The laboratory adheres to the quality system standards of FDA/CFSAN, as well as those of the NSSP.

Submitters Signature	Date:
Submission of validation data and draft method to committee	Date:
Reviewing members:	
Reviewing members.	
Accepted	Date:
Accepted	Date.
	D.
Recommendations for further work	Date:

A. Validation Criteria

Data were generated using 20 separate lots of PHP oysters spiked with appropriate dilution(s) of a log phase culture of *Vibrio vulnificus*. Spike levels were determined by plate counts on TSA. Unless otherwise stated data was handled and analyzed as recommended in the SLV Documents for MPN Based Microbiological Methods on the ISSC website, with the exception of correcting for background using the blank sample data. The correction was not made because the levels in the blank samples were extremely low (near the LOD) and the it was more appropriate, from a statistical perspective, to not make the adjustment. For samples not detected, ½ the theoretical LOD was substituted for those values. For samples greater than the upper limit of the test, the values for the upper limit was used.

Table 1. Data used for determination of Accuracy/Trueness and Measurement Uncertainty.

Sample	Plate Count (Log CFU/g)	Sample Blank (Log MPN/g)	Spiked Sample (Log MPN/g)
1	-0.35	0.31	-0.25
2	4	ND*	3.33
3	1.19	ND	1.4
4	2.92	-0.45	3.17
5	1.38	ND	1.8
6	1.06	-0.52	2.36
7	2.74	-0.52	2.64
8	4.78	ND	4.96
9	4.84	ND	5.75
10	3	ND	3.38
11	6.54	ND	6.16
12	1.11	ND	1.63
13	6.08	0.36	5.36
14	4.88	ND	5.62
15	-0.19	ND	-0.15
16	2.57	ND	2.36
17	0.97	ND	1.92
18	1.53	ND	1.17
19	1.88	-0.45	2.16
20	0.52	-0.13	0.50

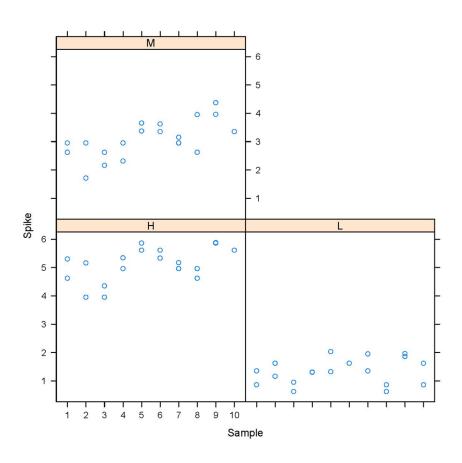

^{*}ND=Not Detected

Table 2. Data used for determination of Precision and Recovery. Samples A and B are replicate analyses of the spiked homogenate.

Sample	Plate Count (Log CFU/g)	Sample Blank (Log MPN/g)	Spiked Sample A (Log MPN/g)	Spiked Sample B (Log MPN/g)
1	0.66	0.31	0.87	1.36
1	2.66	0.31	2.96	2.63
1	4.66	0.31	4.63	5.31
3	1.19	ND	1.63	1.17
3	3.19	ND	1.72	2.96
3	5.19	ND	3.96	5.17
5	0.38	ND	0.63	0.96
5	2.38	ND	2.63	2.17
5	4.38	ND	3.96	4.36
7	0.74	-0.52	1.32	1.31
7	2.74	-0.52	2.96	2.32
7	4.74	-0.52	4.97	5.35
9	0.84	ND	2.04	1.33
9	2.84	ND	3.66	3.38
9	4.84	ND	5.87	5.62
11	1.54	ND	1.63	1.63
11	3.54	ND	3.63	3.36
11	5.54	ND	5.34	5.62
13	1.08	0.36	1.36	1.96
13	3.08	0.36	2.96	3.16
13	5.08	0.36	5.18	4.97
15	0.81	ND	0.63	0.87
15	2.81	ND	2.63	3.96
15	4.81	ND	4.97	4.63
17	0.97	ND	1.97	1.87
17	2.97	ND	4.38	3.97
17	4.97	ND	5.87	5.887
19	0.88	-0.45	1.63	0.87
19	2.88	-0.45	3.36	3.36
19	4.88	-0.45	5.62	5.62

^{*}ND=Not Detected

Figure 1. Plot of data from Table 2 by different concentrations (Low, Medium, and **High).** An alternative approach from ISSC recommendations to evaluating precision was used as a generalized least square regression with heterogenous variance structure was deemed a more appropriate test to estimate variance components for method error at different concentrations and then test whether or not method error varies significantly by concentration level. The output estimates of the variance components of the fit of two different models and then a comparison of those fits. One model has different parameters for method variation for each level (L, M, H) and the other constrains that variation to be the same across levels. The 1st model (null) estimates a common method error SD as 0.387 (same as the nested ANOVA). The 2nd model (full) estimates different method error SDs as 0.3217, 0.4688 and 0.3558 at levels L, M, and H respectively. Both models fit the same main effects (Levels nested within Samples) to remove that variation from what remains to determine method error estimates. A likelihood ratio test is used to compare the difference in the fit between the two models. The test statistic is the likelihood ratio between the two models and this is distributed as a Chi-square with 2 degrees of freedom (the difference in the number of parameters between the two models, 3 vs 1 variance parameters). The test statistic has a value of 1.58 and the p-value is 0.54 indicating no significant difference between the fits and hence no strong statistical evidence that method error varies across levels (L, M, H). The MSE for the residuals is 0.15. This corresponds to a SD of 0.39, which is only slightly higher than the theoretical method error SD (0.32), with a lower 95% confidence limit of 0.32.

Table 3. Data used for determination of Specificity. Spike samples A-E are replicate analyses of the homogenate spiked only with Vv. Dual spike samples A-E are replicate analyses of the same homogenate spiked with Vv and the interfering organism.

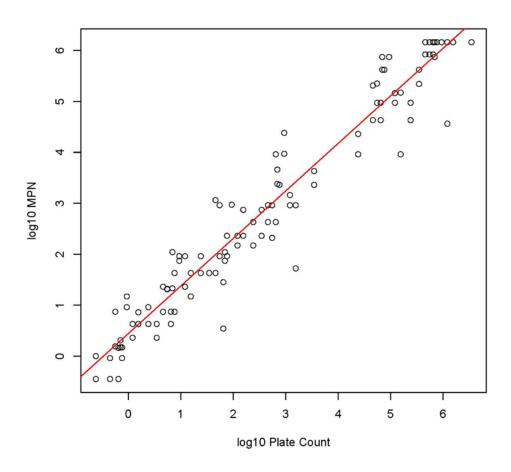

Sample	Interfering Organism	Interfering Organism Plate Count (Log CFU/g)	Vibrio vulnificus Plate Count (Log CFU/g)	Sample Blank (Log MPN/g)	Spike Sample A (Log MPN/g)	Spike Sample B (Log MPN/g)	Spike Sample C (Log MPN/g)	Spike Sample D (Log MPN/g)	Spike Sample E (Log MPN/g)	Dual Spike Sample A (Log MPN/g)	Dual Spike Sample B (Log MPN/g)	Dual Spike Sample C (Log MPN/g)	Dual Spike Sample D (Log MPN/g)	Dual Spike Sample E (Log MPN/g)
6	Vibrio parahaemolyticus	5.49	1.06	-0.52	2.36	2.38	2.38	2.38	2.66	1.63	0.31	0.19	1.32	0.19
12	Vibrio cholerae	6.75	1.11	ND	1.63	1.63	1.63	1.63	1.96	1.36	0.96	1.36	1.63	1.63
18	Vibrio fluvialis	6.83	1.53	ND	1.17	1.36	1.63	1.36	1.86	1.96	1.96	1.63	-0.03	0.06
20	Vibrio alginolyticus	6.17	0.52	-0.13	0.45	0.96	0.31	0.45	0.45	0.96	0.44	0.43	-0.04	0.3

Table 4. Data used for determination of Working and Linear Ranges, Limit of Detection, and Limit of Quantitation/Sensitivity. Samples A and B are replicate analyses of the spiked homogenate. The LOQ is determined by the amount of inoculum used in the lowest dilution of the MPN, so long as the LOD is not statistically different than 1. As tested with a starting inoculum of 1g, the LOD of this method is 0.3 MPN/g

Sample	Plate Count (Log CFU/g)	Sample Blank (Log MPN/g)	Spike Sample A (Log MPN/g)	Spike Sample B (Log MPN/g)
1	-0.35	0.31	-0.45	-0.04
1	0.66	0.31	0.87	1.36
1	1.66	0.31	1.63	3.06
1	2.66	0.31	2.96	2.63
1	4.66	0.31	4.63	5.31
1	5.66	0.31	5.92	6.16
3	0.19	ND	0.86	0.63
3	1.19	ND	1.63	1.17
3	2.19	ND	2.36	2.87
3	3.19	ND	1.72	2.96
3	5.19	ND	3.96	5.17
3	6.19	ND	6.16	6.16
5	-0.62	ND	0	-0.45
5	0.38	ND	0.63	0.96
5	1.38	ND	1.63	1.96
5	2.38	ND	2.63	2.17
5	4.38	ND	3.96	4.36
5	5.38	ND	4.97	4.63
7	-0.25	-0.52	0.87	0.19
7	0.74	-0.52	1.32	1.31
7	1.74	-0.52	1.96	2.96
7	2.74	-0.52	2.96	2.32
7	4.74	-0.52	4.97	5.35
7	5.74	-0.52	5.92	6.16
9	-0.15	ND	0.31	0.17
9	0.84	ND	2.04	1.33
9	1.84	ND	1.87	2.04
9	2.84	ND	3.66	3.38
9	4.84	ND	5.87	5.62
9	5.84	ND	5.87	6.16
11	0.54	ND	0.36	0.63
11	1.54	ND	1.63	1.63
11	2.54	ND	2.36	2.87
11	3.54	ND	3.63	3.36

11	5.54	ND	5.34	5.62
11	6.54	ND	6.16	6.16
13	0.08	0.36	0.36	0.63
13	1.08	0.36	1.36	1.96
13	2.08	0.36	2.36	2.17
13	3.08	0.36	2.96	3.16
13	5.08	0.36	5.16	4.97
13	6.08	0.36	6.16	4.56
15	-0.19	ND	-0.45	0.16
15	0.81	ND	0.63	0.87
15	1.81	ND	1.45	0.54
15	2.81	ND	2.63	3.96
15	4.81	ND	4.97	4.63
15	5.81	ND	5.92	6.16
17	-0.03	ND	0.96	1.17
17	0.97	ND	1.96	1.87
17	1.97	ND	2.97	2.97
17	2.97	ND	4.38	3.97
17	4.97	ND	5.87	5.87
17	5.97	ND	6.16	6.16
19	-0.12	-0.45	-0.04	0.17
19	0.88	-0.45	1.63	0.87
19	1.88	-0.45	1.96	2.36
19	2.88	-0.45	3.36	3.36
19	4.88	-0.45	5.62	5.62
19	5.88	-0.45	6.16	6.16

Figure 2. Plot of data from Table 4 for determination of LOD/LOQ.

Table 5. Data used for determination of Ruggedness. Results reported as log MPN/g of *V. vulnificus* for each variation of the method SOP.

			Med	dia/	-	ers shucl							Boil	prep						er Mix t		Master
	Plate	Sample	Reag	ents	r	orior to b	lending	3		MP	N incub	ation	tir	ne	Maste	er Mix s	stored f	frozen	an	d re-fro	zen	Mix at
	Count	Blank							RT 30 m		RT	39C										RT
	(Log	(Log			4C	4C	RT	RT	Post-	35C	18-	18-										0.5-
Sample	CFU/g)	MPN/g)	Lot 1	Lot 2	1h	3h	30m	1h	blending	>24h	24h	24h	5m	30m	5d	3d	2d	1d	4X	3X	2X	1.5h
2	4.00	0.52	3.33	5.04	3.38	4.04	3.66	4.04	4.04	5.04	4.04	3.66	4.04	4.04	3.33	3.06	3.33	3.33	3.33	3.33	3.33	2.54
4	2.92	-0.45	3.17	3.17	2.66	3.04	3.38	2.36	3.17	2.97	3.38	3.38	3.17	3.38	3.17	3.17	3.17	3.17	3.17	3.17	3.17	3.17
6	1.06	-0.52	2.36	2.36	0.06	-0.45	0.31	1.87	0.36	0.54	1.53	0.63	2.66	2.38	2.66	2.38	2.38	2.38	2.66	2.66	2.38	2.38
8	4.78	ND	4.96	4.63	4.38	417	4.38	4.63	4.63	4.59	4.38	4.63	4.63	4.96	4.63	4.63	4.63	4.63	4.63	4.63	4.63	4.63
10	3.00	ND	3.38	3.38	2.97	2.38	3.66	2.63	3.16	3.17	2.96	2.63	3.36	3.36	3.36	3.36	3.36	3.36	2.96	3.36	3.36	3.36
12	1.11	ND	1.63	1.63	1.63	0.87	1.86	1.36	1.63	1.3	1.17	1.16	1.63	1.63	1.96	1.63	1.63	1.63	1.63	1.63	1.63	1.63
14	4.88	ND	5.62	5.34	4.97	4.97	4.97	4.97	4.97	5.34	4.63	4.63	5.62	5.62	5.62	5.62	5.62	5.62	5.62	5.62	-0.52	5.62
16	2.57	ND	2.36	2.36	1.36	1.96	2.17	2.36	2.63	2.63	2.63	3.36	2.36	2.36	2.36	2.36	2.36	2.36	2.36	2.36	2.36	2.36
18	1.53	ND	1.17	1.36	1.63	1.36	1.86	1.36	1.63	1.63	1.63	2.17	1.32	1.63	1.96	1.63	1.63	1.96	1.96	1.96	1.96	1.96
20	0.52	-0.13	0.45	0.96	0.31	-0.04	0.96	0.19	-0.04	1.17	0.58	0.36	0.32	0.17	0.45	0.45	1.63	0.45	0.45	1.63	0.45	0.45

Table 6. Data used for determination of Comparability. Samples of with naturally incurred *V. vulnificus* were analyzed by both the test (MPN-real-time PCR) and NSSP (MPN-culture, with DNA probe confirmation) methods.

Sample	Real-Time PCR (Log MPN/g)	DNA Probe (Log MPN/g)
AL18-121	3.87	4.17
AL18-122	4.17	3.31
AL18-123	4.17	3.31
AL18-130	3.96	3.17
AL18-131	3.96	2.96
AL18-132	4.06	>4.06
AL18-139	3.96	3.96
AL18-148	1.98	3.96
AL-1	3.63	3.96
AL-2	2.63	3.32
SC-1	1.63	2.36
SC-2	2.36	2.36
SC-3	0.58	3.16
NC-1	2.45	3.36
NC-2	3.63	3.63
NC-3	3.17	3.17
NC-4	2.96	3.63
NC-5	2.63	3.63
NC-6	2.63	3.63
NC-7	2.36	4.31
VA-1	3.63	3.63
VA-2	-0.45	2.63
VA-3	2.44	2.17
WA-1	ND	1.36
WA-2	ND	-0.03
WA-3	ND	1.36
WA-4	ND	-0.52
WA-5	ND	1.32
CA-1	ND	-0.04
CA-2	ND	ND
OR-1	ND	ND
OR-2	ND	ND

Appendix A. Equipment Required.

Blender

Oyster knife

Shucking knife

Nitrile or Latex gloves

Soap

Stiff bristled brush

Chain mail glove (optional)

Bone cutting forceps (optional)

Test tubes (FisherScientific, 14-961-32, or equivalent)

Tube closures (FisherScientific, 14-957-92K, or equivalent)

Test tube racks (FisherScientific, 14-809-64, or equivalent)

Sterile stripettes (FisherScientific, 07-200-574, or equivalent) or pipet tips

Pipette-Aid or micropipettor (capable of 1000 µl)

Balance with a sensitivity of at least 0.01g

Incubator capable of maintaining 35±2°C

Heat block (95-100°C) or boiling water bath

Eppendorf 5415D centrifuge or equivalent (capable of >10,000xg)

Microcentrifuge tubes (USA Scientific, 1620-2799, or equivalent)

Mini-centrifuge (USA Scientific, 2631-0006, or equivalent)

AB 7500 Fast System (Life Technologies, Foster City, CA)

MicroAmp Fast Optical 96 Well Reaction Plate 0.1mL (Cat# 4346907) or MicroAmp Fast 8-tube strips (0.1 mL) (Cat# 4358293)

MicroAmp Optical 8-Cap Strip (Cat# 4323032) or Optical Adhesive Film (Cat# 4311971)

Micropipettors (volume ranges from $0.1 - 1000 \mu l$)

Filtered, DNase/RNase-free pipette tips

Refrigerator capable of maintaining 2-8°C

Freezer capable of maintaining <-15°C

Stripfuge or 96 well plate centrifuge

Ice bucket (optional)

Tube and plate racks

PCR hoods with UV light

Appendix B. Media and Reagents Required.

APW, prepared according to BAM manual, Chapter 9, Vibrio (M10).

PBS, prepared according to BAM manual, Chapter 9, Vibrio (R59).

Platinum Taq DNA polymerase kit (ThermoFisher,10966026) Invitrogen, Carlsbad, CA):

Includes Taq, PCR Buffer, 50mM MgCl₂

PCR Nucleotide Mix (DNTP's) (Sigma Aldrich, 11814362001)

ROX reference dye (ThermoFisher,12223012)

Internal Amplification Control (IAC) DNA (BioGX, Birmingham, AL)

PCR-grade water (Ambion AM9937, or equivalent)

Crushed ice (optional)

Tris pH 8.0 (ThermoFisher, AM9855G, or equivalent)

Oligonucleotide primers (desalted) – see Table

Nuclease-style probes (HPLC purified) – see Table

	Sequence (5' to 3')	Modifications
vvhF	TGTTTATGGTGAGAACGGTGACA	
vvhR	TTCTTTATCTAGGCCCCAAACTTG	
vvh Probe	CCGTTAACCGAACCACCCGCAA	5Cy5-3IAbRQSp ^a
IAC 46G	GACATCGATATGGGTGCCG	
IAC 186R	CGAGACGATGCAGCCATTC	
IAC Probe	TCTCATGCGTCTCCCTGGTGAATGTG	56-JOEN-3IABkFQ ^b

^a Iowa Black RQ-Sp

^b Iowa Black FQ

Appendix C. Detailed Procedure.

1. Shellfish Preparation:

- a. Scrape off growth and loose material from shell and scrub shell stock with sterile stiff brush under running water.
- b. Place clean shellstock on clean towels or absorbent paper.
- c. Change gloves and brushes between samples.
- d. Protective chain mail glove can be used under a latex or nitrile glove; outer gloves should be changed between samples and disinfected with alcohol immediately prior to analysis.
- e. Tare a sterile blender.
- f. Using a sterile oyster knife, insert the point between the shells on the ventral side, about ½ the distance from the hinge to the bill; alternately, knife can be inserted after making small opening with sterile bone cutting forceps.
- g. Cut adductor muscle from upper flat shell and pry the shell wide enough to drain shell liquor into the blender.
- h. The upper shell can then be pried loose at hinge and discarded.
- i. The whole animal (including adductor muscle) should be transferred to the sterile blender after severing the adductor muscle connection to the lower shell.
- j. A minimum of 12 animals is used.
- k. blend for 60-120 sec. If sample requires dilution, an equal weight of sterile PBS is used. After blending, homogenized sample is further processed within 20 minutes.

2. MPN for Vibrio Analysis

- a. Prepare a 1:10 dilution of the homogenate by transferring 1g (weighing is required for accurate transfer) of the homogenate to 9 mL of PBS.
 - i. If diluent was used, transfer 2 g of 1:1 homogenate to 8 mL of PBS. Additional 10-fold dilutions can be prepared volumetrically (i.e., 1 mL of 1:10 to 9mL of PBS for a 1:100 dilution).
 - ii. Volume of PBS is critical, so tubes must be aseptically filled after sterilization of diluent.
- b. Transfer 1g of homogenate to APW, in triplicate (this should be done by weight to ensure accurate transfer).
- c. Inoculate 1 ml portions of the 1:10, 1:100, 1:1000, 1:10,000, 1:100,000, and 1:1,000,000 dilutions (from step 2.a.) into APW, in triplicate, for as many dilutions as deemed necessary for the sample.
- d. Inoculate appropriate process controls into properly labeled tubes of APW.
- e. Leave one APW tube un-inoculated as a blank.
- f. Incubate APW overnight (18-24h) at $35 \pm 2^{\circ}$ C.
- g. Confirm presence of Vv in each turbid tube by Real-Time PCR as described below.
- h. Determine MPN estimate for each sample using the draft "Dilution Selection Tool" to select appropriate dilutions. Use the standard table or calculator tool available in the BAM, Appendix 2 and report as MPN/g of shellfish.

3. Preparation of DNA Extracts

- a. Transfer 1mL from each MPN tube with visible growth (turbidity) to a microcentrifuge tube.
- b. Boil (heat to 95-100°C) the sample aliquots from APW tubes, including the process controls and blank, for 10 min. Ensure that one set of process controls is included with each set of samples in a heat block.
- c. Immediately plunge into ice until cold, or freeze at <-15°C.
- d. If extracts were previously frozen, ensure they are completely thawed (not exceeding room temperature) before proceeding.
- e. Centrifuge samples for 2 min at >10,000 x g. Use 2μ L of supernatant as template in the real-time PCR reaction as detailed below.
- f. DNA extracts can be stored at 4°C for up to 3d or at <-15°C for up to 6 months.

4. Preparation of PCR

- a. Prepare mastermix in the clean hood and using aerosol resistant pipette tips. Use DNAse and RNAse free consumables.
 - i. Refer to the Table below for component concentrations.
 - ii. Briefly mix tubes of individual components.
 - iii. Briefly centrifuge the tubes (2-3 sec) in a mini centrifuge.
 - iv. Combine components (except for IAC DNA) into an appropriately sized tube.

PCR Mastermix

Component	Units	Final Concentration	Vol/Rxn (μL)
PCR H2O			12.22
PCR Buffer	X	1.000	2.500
MgCl_2	mM	5.000	2.500
dNTPs (mixed equal conc of each)	mM	0.300	0.750
Forward Primer vvhF	μM	0.300	0.750
Reverse Primer vvhR	μM	0.300	0.750
Forward Primer IAC 46F	μM	0.075	0.188
Reverse Primer IAC 186R	μM	0.075	0.188
Probe vvh Cy5	μM	0.200	0.500
Probe IAC JOE	μM	0.150	0.375
Platinum Taq	Units/µL	1.120	0.220
ROX (passive reference dye) 1:1 dilution		0.03	0.060

- b. After the mastermix is compiled, move to a template hood and add the appropriate amount of IAC DNA to the mastermix. Use an IAC concentration that will amplify between 24-29 cycles.
- c. The completed mastermix should be used the day of preparation or frozen until use. Mastermix can be frozen at this point or after it has been aliquoted into the reaction tubes or wells.

- d. Flick mastermix tube to mix. If previously frozen as a single tube, ensure the mastermix is completely thawed (not exceeding room temperature).
- e. Briefly centrifuge mastermix (2-3 sec) in a mini centrifuge.
- f. Add 23μL of mastermix to each reaction tube or well. If previously frozen after aliquoting to individual tubes or wells, ensure the mastermix is completely thawed (not exceeding room temperature) and then briefly centrifuge (2-3 sec) before proceeding.
- g. Add 2µL of supernatant from each boiled DNA extract sample (including process controls and APW blank) to a reaction tube or well.
- h. Add 2μL of positive control template (boiled cells of strain VV ATCC 33816) to a reaction tube or well as a PCR positive control.
- i. Add 2µL of PCR-grade water to a tube or well as a PCR negative control.
- j. Centrifuge sample tubes or 96-well plate briefly (2-3 sec) to ensure reagents and sample are settled to the bottom.
- k. Load sample tubes or 96-well plate to instrument and start cycling with the cycling parameters listed in Table below.
- 1. The read stage for the instrument should be programmed to the extension phase.

Cycling Parameters

	Temp (°C)	Time (s)	
Initial Denature	95	60	
Denature	95	15	
Anneal	57	15	x45
Extend	72	25	

5. Data Analysis:

- a. For results analysis, default instrument settings will be used, except the threshold is set at 0.02 and background end cycle set from 3 to 10 on the AB7500.
- b. Positive/negative results will be recorded based on the instrument determinations. Analyst will review amplification data for all samples and can record a positive/negative determination discrepant with the instrument output if supported by the raw fluorescence data.
- c. If both the IAC and target are negative, the reaction should be considered invalid, and the sample re-tested.
- d. If the negative PCR control reaction is positive, all positive samples in the same run must be considered invalid, and can be re-tested.
- e. If the positive PCR control reaction is negative, all negative samples in the same run must be considered invalid, and can be re-tested.

Appendix D. Source of matrix for spike samples.

Sample	PHP	Date of	Location of	Process	Vv Strain
	Type	Harvest	Harvest	Date	
1	HPP	2017-10-15	Area 3. LA	2017-10-18	07-2405
2	HPP	2017-10-21	Area 5. LA	2017-10-25	K4776
3	IQF	2017-05-17	Area 8. LA	2017-05-28	R844-G9
4	Irradiated	2017-11-02	Area 3. LA	2017-11-07	R19-C1
5	HPP	2017-11-13	Area 19. LA	2017-11-15	K4633
6	IQF	2017-06-12	Area 9. LA	2017-06-15	R84-F1
7	HPP	2017-12-03	Area 3. LA	2017-12-06	07-2405
8	Irradiated	2018-01-03	Area 3. LA	2018-01-07	K4776
9	HPP	2018-04-15	Area 19. LA	2018-04-18	R844-G9
10	IQF	2018-01-14	Area 3. LA	2018-01-18	R19-C1
11	HPP	2018-05-19	Area 19. LA	2018-05-23	K4633
12	IQF	2018-03-07	Area 9. LA	2018-03-08	R84-F1
13	HPP	2018-06-17	Area 12. LA	2018-06-20	07-2405
14	IQF	2017-12-01	Area 3. LA	2017-12-04	K4776
15	HPP	2018-07-01	Area 3. LA	2018-07-05	R844-G9
16	IQF	2017-12-16	Area 3. LA	2017-12-18	R19-C1
17	HPP	2018-07-29	Area 3. LA	2018-08-01	K4633
18	IQF	2017-12-16	Area 3. LA	2017-12-18	R84-F1
19	HPP	2018-08-12	Area 3. LA	2018-08-16	07-2405
20	IQF	2017-12-20	Area 9. LA	2017-12-21	K4776

Appendix D. Abbreviations and Acronyms.

APW - Alkaline Pepton Water

ATCC – American Tissue Culture Collection

BAM – Bacteriological Analytical Manual

CFU – Colony Forming Unit

DNA – Deoxyribonucleic Acid

EDTA- Ethylene diamine tetraacetic acid

IAC – Internal Amplification Control

MPN- Most Probable Number

NPC – Negative Process Control

NSSP – National Shellfish Sanitation Program

PBS- Phosphate Buffered Saline

PCR – Polymerase Chain Reaction

PPC – Positive Process Control

RNA- Ribonucleic Acid

Tris – tris(hydroxymethyl)aminomethane

Vv- Vibrio vulnificus